Environmental Product Declaration

(PCR: Construction products and construction services; registration 2012:01; version 2.33)

ALPOLIC[™] NC / A1

Non-combustible Aluminium Composite Panel

Environmental Product Declaration (EPD)

in accordance with ISO 14025 and EN 15804:2012+A1:2013.

EPD Registration No. SP-03725 | Version 1.0

Issued 24/08/2021 | Valid until 24/08/2026

Company Information

Product-related or management system-related certifications:

ISO 9001 – Quality management systems.

ISO 14001 – Environmental Management Systems.

AS 1530.1/1530.3, EN13501-1 (ISO1182), BS476-4 Fire Test.

Name and location of production site: Mitsubishi Chemical Infratec Co., Ltd., Japan.

Local address: Network Architectural. 71-75 Marigold Street, Revesby, NSW, 2212, Australia.

Tel. - (02)8316-5000.

www.networkarchitectural.com.au

ALPOLIC[™] NC / ALPOLIC[™] A1

ALPOLIC[™]NC / ALPOLIC[™] A1 is an aluminium composite material (ACM) with a non-combustible core, suitable for exterior or interior claddings, soffit linings, and roof covering in new buildings and retrofit applications wherever a non-combustible material is required. The ALPOLIC[™] NC / ALPOLIC[™] A1 product is manufactured by Mitsubishi Chemical Infratec Co., Ltd. and is furnished by approved distributors and authorised dealers. Network Architectural is the distributor for ALPOLIC[™] NC in Australia. ALPOLIC[™] A1 is another name for ALPOLIC[™] NC.

United Nations Central Product Classification (UN CPC) code: 314/415/3814 (EPD International, 2020).

<u>Geographical scope</u>: Final product produced in Japan and sold by Network Architectural in the Australian market.

Composition of ALPOLIC" NC

<u>Functional unit / declared unit:</u> 1 m² of ALPOLIC[™]NC / ALPOLIC[™] A1. <u>Scope:</u> Cradle to gate with options. Reference service life: 20 years¹.

¹ The reference service life is taken with respect to the warranty provided by Mitsubishi Chemical Infratec Co., Ltd. ALPOLIC[™]NC / ALPOLIC[™] A1 is still used in structures older than 30 years.

<u>Databases and LCA software used:</u> AusLCI 2.2, Ecoinvent 3.6, Industry Data 2.0 databases; USLCI, SimaPro 9.1.0.11 software.

<u>Data collection period</u>: Data collected from January 2021-April 2021 as per annual manufacturing data of 2020-2021.

An Environmental Product Declaration, or EPD, is a standardised and verified way of quantifying the environmental impacts of a product that is based on a consistent set of rules known as Product Category Rules (PCR). EPDs within the same product category from different programs may not be comparable. This EPD is for a specific construction product and follows the Construction products and construction services; registration 2012:01; version 2.33.

Please note that EPDs of construction products may not be comparable if they do not comply with EN 15804. The EPD owner has the sole ownership, liability, and responsibility for the EPD.

Jonas Bengtsson, Edge Environment, L5, 39 East Esplanade, Manly NSW 2095 Australia.

Procedure Follow-up

Procedure for follow-up of data during EPD validity involves third party verifier: \square Yes \square No

Product Information

ALPOLIC[™] NC / ALPOLIC[™] A1 is composed of a non-combustible core sandwiched between two skins of 0.5mm thick aluminium alloy (3105-H14). The surface is finished with a high-performance Lumiflon-based fluoropolymer coating as standard. ALPOLIC[™] NC / ALPOLIC[™] A1 is available in finishes of Solid Colours, Metallic Colours, Sparkling Colours, Prismatic Colours, and Patterns. In these finishes, Lumiflon-based fluoropolymer paints are applied in the manufacturer's continuous coil coating lines. For the LCA study, a metallic-based colour by Lumiflon is selected. The backside facing the structural wall or steel after the installation as a cladding panel has a polyester-based coating or a service coating as corrosion protection. The surface ALPOLIC[™] NC / ALPOLIC[™] A1 is also protected with a co-extruded white and black coloured removable and self-adhesive film. The product is made of 50% recycled aluminium and all aluminium can be recycled at the end of the product's life.

The properties of ALPOLIC[™] NC / ALPOLIC[™] A1 are listed below,

Physical Properties							
Item	Unit						
Panel weight	kg/m2	8.6					
Thermal expansion (ASTM D696)	×10-6 /°C	20.6					
Thermal conductivity (ISO 8990)	W/m.K	0.4					
Deflection temperature (ISO 75-2)	°C	115					
Mechanical Properties							
Tensile strength (ASTM E8)	MPa or N/mm2	48.2					
0.2% proof stress (ASTM E8)	MPa or N/mm2	46.5					
Elongation (ASTM E8)	%	2.7					
Flexural elasticity (ASTM D7250)	GPa or kN/mm2	45.6					

Table 1 Properties of ALPOLIC[™] NC / ALPOLIC[™] A1

Background Data

The overall temporal scope for background data is less than 10 years. The temporal scope for AUSLCI V1.36, a shadow database of modified ecoinvent 2.2 processes is March 2021. For ecoinvent 3.6 the temporal scope is September 2019. The USLCI 2015 dataset has the temporal scope of 2015 (SimaPro , 2019).

For geographical scope, background datasets and activities within Australia are taken from AUSLCI and are Australian-specific unit processes. For datasets and activities in Japan, the library used is ecoinvent and

global scope is taken into consideration except for electricity use, where Japan-specific data was available in the AUSLCI library.

System Boundaries and Life Cycle Stages

Life Cycle Stages

The system boundary describes the life cycle stages and the processes included in the LCA. The stages include raw material supply (A1), transportation (A2), manufacturing (A3), optional transport to the final site (A4), deconstruction (C1), transport at end-of-life (C2), waste processing (C3), waste disposal (C4) as well as reuse, recycling, and recovery. The module selected for this study is Cradle to gate with options, modules C1–C4, module D. The additional module is A4.

	Life Cy	/cle Stage	Life Cycle Module	Declared Module
Upstream processes	A1	Raw material supply	Product stage	x
	A2	Transportation		Х
Core Processes	A3	Manufacturing		x
Downstream	A4	Transport to final site	Construction	X
Processes	A5	Installation at the construction site	stage	Х
	B1	Use	Use stage	ND
	B2	Maintenance		ND
	B3	Repair		ND
	B4	Replacement		ND
	B5	Refurbishment		ND
	B6	Energy use to operate building-		ND
		integrated technical systems		
	B7	Operational water use by building		ND
		integrated technical systems		
	C1	Deconstruction	End-of-life stage	Х
	C2	Transport		Х
	C3	Waste processing		Х
	C4	Waste disposal		Х
Other	D	Reuse recovery recycling potential	Reuse, recovery,	Х
Environmental			recycling stage	
Stage				

Tahle 2. Life	rucle stanes	of ALPOLIC™	NC		Δ1
Tuble 2. Lije	cycle stuges	UJ ALPOLIC	NC/	ALPOLIC .	AI

System Diagram

The life cycle of ALPOLIC[™] NC / ALPOLIC[™] A1 is divided into three different processes – upstream, core, and downstream processes. The upstream processes include the flows of raw materials. The core processes include all activities that the manufacturing organisation controls, i.e. transportation of the materials to the manufacturing factory and the actual method of manufacturing the final product. The downstream processes include the steps controlled by a consumer and the disposal or recycling options of the products. The figure below shows the process diagram of ALPOLIC[™] NC / ALPOLIC[™] A1. The boxes in green are the

flows included in this study's system boundary. The installation and use phases of the product are not included in this project, in line with the 'cradle to gate with options' modelling according to the relevant product category rules (The international EPD System, 2021).

Figure 1: Process diagram ALPOLIC™ NC / ALPOLIC™ A1

End-of-life Scenarios

In scenario 1, the LCA is modelled with an assumption that 100% aluminium is recovered from the aluminium composite panel at the end of its reference life of 20 years. In scenario 2, the LCA is modelled with an assumption that only 50% of the aluminium is recycled. It is assumed that heat treatment is used to separate aluminium from other composite materials. The assumption is that recycling occurs in the Australian market. The rest of the product ends up in the sanitary landfill.

The end-of-life of packaging by the suppliers is also taken into consideration. Packaging materials like steel are recycled. The rest were considered to end up in the sanitary landfill.

Data Quality, Temporal Scope, and Geographical Scope

The modelling of ALPOLIC[™] NC / ALPOLIC[™] A1 is of high quality as detailed company-specific data about the product ingredients, suppliers, the annual energy, and water consumption was provided for this study. Furthermore, data for upstream and downstream processes are retrieved from suitable averages in the AusLCI V1.36, Ecoinvent 3.6, and USLCI 2015 databases and are converted into data ideal for Japan.

ALPOLIC[™] NC / ALPOLIC[™] A1 is manufactured in Japan, and the suppliers of materials used in this product are also from Japan. The product is supplied globally. The geographical scope is Japan and Australia.

The temporal scope of the study is the period for which the data was collected. The production volume data is for the year 2020-2021.

Module	Input/Output	Data resource	Temporal	Data		
			Scope	Quality		
A1,A2	Raw material for the final product	Mitsubishi Chemical Infratec	2020-	High		
	Packaging from the suppliers	rs Datasheet(MSDS) of the				
	Transportation- Supplier location- Final Manufacturing location	product and the paint coating used on the product. They				
	Final product packaging	also provided information on				
		used by the suppliers. The				
A3	Manufacturing process for Aluminium Composite Panels	photos of the final packaging materials were provided by	2020- 2021	High		
	Water usage in manufacturing factory per	them.	2020-			
	functional unit	They shared the	2021			
	Energy Usage in manufacturing factory	manufacturing process of the				
	per functional unit	product by explaining it				
		through flowcharts. The				
		Energy use (Electricity and				
		Gas) and Water use per				
		by dividing the energy usage				
		reported on utility bills by the				
		quantity of production of				
		ALPOLIC [™] NC panels at				
		Mitsubishi Chemical Infratec's				
		factory in Japan.				
A4	Port transport to Network Architectural	Network Architectural	2020-	High		
	Japan to Australia-Sea transport	Japan, and their Australian	2021			
	Manufacturing factory to Port Transport	suppliers Network Architectural				
C1	Manual Deconstruction	Network Architectural	2020- 2021	High		

Table 3: Data sources, temporal scope, and data quality

C2	End of the life Transport-100km distance is assumed for transport to resource recovery and waste treatment facility	Network Architectural provided information that the product needs to be manually deconstructed.	 Low
С3	End of the life treatment- Treatment to separate Aluminium from other materials in the panel	Assumption- Average distance of 100km is taken into consideration as per resource recovery facilities in Australia.	Medium
C4	End of the life- and disposal of other materials through sanitary landfill	Assumption	Medium
D	Recycling of aluminium, packaging paper, steel drum packaging	Information provided by Mitsubishi Chemical Infratec on how the product can be manually separated at end of life.	Medium

Allocations

In the manufacturing of ALPOLIC[™] NC / ALPOLIC[™] A1 no co-product or by-product is obtained. Allocation of any production processes to more than one product is therefore not needed.

In the International EPD System framework, the methodological choices for allocation for reuse, recycling, and recovery have been set according to the polluter pays principle (PPP). This means that the waste generator shall carry the total environmental impact until the point in the product's life cycle at which the waste is transported to a scrapyard or the gate of a waste processing plant (collection site). The subsequent user of the waste shall carry the environmental impact from the processing and refinement of the waste but not the environmental impact caused in any previous life cycles (EPD International, 2021).

Any allocations directly embedded in the LCA database processes were adopted. The energy and water calculations are allocated based on electricity consumption and production of ALPOLIC[™] NC in the Mitsubishi Chemical Infratec Co., Ltd. manufacturing unit. Electricity, gas, and water consumption are calculated based on the production volume of the year 2020. The total Energy/water consumed by the manufacturing unit in Japan was divided by the volume of ALPOLIC[™] NC produced for that year to find the individual consumption value of each product.

Content Declaration

The material composition for ALPOLIC[™] NC / ALPOLIC[™] A1 is given in Table 4.

Materials	Quantity in percentage
Aluminium	31.3%
Core Material	67.4%
Coatings	1.3%
Sum	100.00%

Table 4 Materials used for 1m² ALPOLIC[™] NC / ALPOLIC[™] A1

Environmental Performance

Non-renewable secondary fuels (MJ)

Net use of fresh water (m³)

Environmental Impact Assessment Methods

The table below represents the Environmental Indicators calculated in this study and the methods used to calculate them in the SimaPro Software.

Environmental Indicators	SimaPro Method
Climate change- total	
Climate change - fossil	Greenhouse Gas Protocol V1.02 / C02 eq (kg)
Climate change - biogenic	
Climate change - land use and land use change CO2	
eq (kg)	
Eutrophication- Fresh water (kg P eq)	EF 3.0 Method (adapted) V1.00
Eutrophication- Terrestrial mol N eq	
Eutrophication- marine (kg N eq)	
Eutrophication- Fresh water (kg PO4 eq)	Eutrophication- Fresh water (kg P eq) * 3.07
Ozone layer depletion	CML-IA baseline V3.6
(kg CFC-11 eq)	
Photochemical oxidation (kg C2H4 eq)	
Depletion of abiotic resources (elements), kg Sb	
equivalents	
Depletion of abiotic resources (fossil), MJ net	
calorific value	
Acidification	
(kg SO2 eq)	
Photochemical oxidation (kg NMVOC)	Recipe 2008
Human toxicity, cancer impacts (cases):	USEtox (recommended) V1.04
Human toxicity non-cancer (cases):	
Freshwater ecotoxicity	
(PAF.m3.day)	
Land use (Pt)	EF 3.0 Method (adapted) V1.00 / EF 3.0
Ionising radiation (kBq U-235 eq)	EN 15804 +A2 Method V1.00 / EF 3.0
Particulate matter (disease inc.)	
Water Use (m ³)	AWARE1.02
Radioactive waste (Kg)	EDIP 2003 method
Hazardous waste (Kg)	EDIP 2003 method
Non-hazardous waste (Kg)	EDIP 2003 method (Sum of Bulk waste and Slag waste)
Primary energy resources Renewable- Use as	Cumulative Energy Demand V1.11 method: calculated as
energy carrier (MJ)	sum of renewable – biomass, renewable – wind, solar,
	geothermal, and renewable – water.
Primary energy resources Renewable- Use as raw	Manual calculation
materials (MJ)	
Primary energy resources Renewable- Primary	Cumulative Energy Demand V1.11 method: calculated as
energy resources Non-renewable- Use as energy	sum of non-renewable – fossil, non-renewable – nuclear,
carrier (MJ)	and non-renewable – biomass.
Use as raw materials (MJ)	Manual calculation
Secondary material resources (MJ)	Manual calculation
Renewable secondary fuels (Kg)	0

0

Recipe 2016 Midpoint V1.04

Table 5 Overview of environmental impact assessment methods used in the study

Environmental Impacts

The impacts are represented with respect to the life cycle modules and processes. The upstream process which includes raw material extraction has the highest effects. Module D has negative impact values as aluminium and packaging materials like recycled steel and paper will reduce the burden from disposal and raw materials of future life cycles.

Parameters		Unit	Upstream	Core	Downstrea	m Process		Scenario	Scenario 2
			Process	Process				1 Other	Other
								Environ	Environ
							mental	mental	
							benefits	benefits	
			A1	A2-A3	A4	C1-C2	C3-C4	D	D
Global	Fossil CO2 eq	kg CO2	4.86E+01	2.20E+00	4.58E+00	2.59E-01	1.56E-01	-5.27E+01	-2.63E+01
Warming		eq							
Potential	Biogenic CO2	kg CO2	-2.00E+00	1.18E-02	6.84E-04	2.72E-05	2.82E-01	-7.62E-02	-3.81E-02
(GWP)	eq	eq							
	CO2 eq from	kg CO2	1.10E-01	3.65E-04	1.46E-04	2.86E-05	3.32E-06	-2.28E-04	-1.14E-04
	land	eq							
	transformation								
	Total	kg CO2	4.67E+01	2.21E+00	4.58E+00	2.59E-01	4.37E-01	-1.06E+02	-5.29E+01
		eq							
Eutrop-	Eutrophication,	kg P eq	1.59E-02	1.03E-04	1.04E-04	1.13E-05	4.20E-06	-1.57E-03	-7.83E-04
-hication	freshwater								
	Eutrophication,	kg PO4	4.90E-02	3.17E-04	3.19E-04	3.47E-05	1.29E-05	-4.81E-03	-2.40E-03
	freshwater	eq							
	Eutrophication,	kg N eq	5.41E-02	2.74E-03	1.80E-02	3.80E-04	1.67E-02	-4.76E-02	-2.38E-02
	marine								
	Eutrophication,	mol N	5.40E-01	2.72E-02	1.98E-01	4.17E-03	2.07E-03	-5.16E-01	-2.58E-01
	terrestrial	eq							
Abiotic dep	oletion	kg Sb	8.79E-04	1.69E-05	1.09E-05	2.32E-06	1.49E-07	-1.80E-05	-9.00E-06
		eq							
Abiotic dep	pletion (fossil	MJ	5.00E+02	3.40E+01	5.12E+01	3.54E+00	1.94E+00	-2.92E+02	-1.46E+02
fuels)									
Ozone laye	er depletion	kg CFC-	1.91E-06	2.75E-07	4.45E-07	3.87E-08	2.19E-08	-1.21E-06	-6.05E-07
(ODP)		11 eq							
Photochen	nical oxidation	kg	1.60E-01	7.88E-03	5.10E-02	1.25E-03	3.50E-03	-1.56E-01	-7.79E-02
		NMVOC							
Acidificatio	on	mol H+	3.13E-01	7.54E-03	4.48E-02	1.20E-03	5.58E-04	-3.58E-01	-1.79E-01
		eq							
Water Dep	letion	m3	5.42E+01	5.79E+00	3.44E+01	1.32E+00	6.36E-01	-1.28E+03	-6.42E+02

Table 6 Environmental Impacts for ALPOLIC™ NC/ ALPOLIC™ A1 scenario 1 and Scenario 2

Table 7 represents additional impacts for ALPOLIC[™] NC / ALPOLIC[™] A1.

Parameters	Unit	Upstream Process	Core Process	Downstream Process			Scenario 1 Other Environ mental benefits	Scenario 2 Other Environ mental benefits
		A1	A2-A3	А4	C1-C2	C3-C4	D	D
Land use	Dimensionless	2.99E+02	9.58E+00	4.14E+01	1.52E+00	3.76E+00	-1.25E+02	-6.23E+01
Human	CTUh	8.55E-09	1.53E-10	1.96E-10	1.38E-11	1.79E-12	-2.70E-09	-1.35E-09
toxicity,								
cancer								
Human	CTUh	1.26E-09	8.37E-10	5.17E-10	1.00E-10	9.93E-13	-1.91E-09	-9.57E-10
toxicity, non-								
cancer								
Freshwater	CTUe	2.51E-01	5.52E-03	6.73E-03	4.28E-04	2.01E-04	-3.84E-02	-1.92E-02
ecotoxicity								
lonising	kBq U-235 eq	1.58E+00	6.82E-02	3.06E-02	5.32E-03	3.46E-04	-2.18E-02	-1.09E-02
radiation								
Particulate	disease inc.	3.87E-06	9.31E-08	1.38E-07	1.30E-08	3.81E-09	-4.32E-06	-2.16E-06
matter								
Acidification	kg SO2 eq	2.63E-01	5.76E-03	2.93E-02	7.93E-04	3.57E-04	-1.15E-01	-5.73E-02
Photochemical	kg C2H4 eq	1.55E-02	2.72E-04	5.58E-04	3.00E-05	7.95E-05	-1.01E-02	-5.07E-03
oxidation								

Table 7 Other impacts for ALPOLIC™ NC/ ALPOLIC™ A1 scenario 1 and Scenario 2

Table 8 Resource Use Parameters for ALPOLIC™ NC / ALPOLIC™ A1 scenario 1 and Scenario 2

Parameter		Unit	Upstream Process	Core Process	Downstrea	m Process		Scenario 1 Other	Scenario 2 Other
								Environ	Environ
								mental	mental '
								benefits	benefits
			A1	A2-A3	A4	C1-C2	C3-C4	D	D
Primary	Use as	MJ, net	7.25E+01	3.55E-01	6.96E-01	3.74E-02	9.06E-03	-3.40E+01	-1.70E+01
energy	energy	calorific							
resources	carrier	value							
-	Used as	MJ, net	1.54E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Renewable	raw	calorific							
	materials	value							
	TOTAL	MJ, net	8.79E+01	3.55E-01	6.96E-01	3.74E-02	9.06E-03	-3.40E+01	-1.70E+01
		calorific							
		value							
Primary	Use as	MJ, net	5.30E+02	3.44E+01	5.13E+01	3.56E+00	1.94E+00	-2.92E+02	-1.46E+02
energy	energy	calorific							
resources	carrier	value							
– Non-	Used as	MJ, net	4.26E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
renewable	raw	calorific							
	materials	value							
	TOTAL	MJ, net	5.35E+02	3.44E+01	5.13E+01	3.56E+00	1.94E+00	-2.92E+02	-1.46E+02
		calorific							
		value							
Secondary m	naterial	Kg	1.36E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
resources									

Renewable secondary	MJ, net	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
fuels	calorific							
	value							
Non-renewable	MJ, net	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
secondary fuels	calorific							
	value							
Net use of fresh water	m3	1.37E+00	1.30E-01	7.99E-01	3.08E-02	1.48E-02	-2.98E+01	-1.49E+01

Table 9 represents waste flows for ALPOLIC[™] NC / ALPOLIC[™] A1 Scenario 1 and Scenario 2.

Table 9 Waste flows for ALPOLIC[™] NC / ALPOLIC[™] A1 scenario 1 and scenario 2

Parameters	Unit	Upstream Process	Core Process	Downstream Process			Scenario 1 Other Environ mental benefits	Scenario 2 Other Environ mental benefits
		A1	A2-A3	A4	C1-C2	C3-C4	D	D
Radioactive Waste	Kg	8.48E-04	6.93E-05	3.63E-05	7.17E-06	2.52E-07	-2.81E-06	-1.40E-06
Hazardous Waste	Kg	1.29E-03	5.88E-05	4.52E-05	5.23E-06	1.01E-06	2.13E-03	1.06E-03
Non-Hazardous Waste	Kg	1.13E+01	6.03E-01	4.66E-01	8.68E-02	1.04E+01	-6.46E+00	-3.23E+00

Table 10 represents output flows for ALPOLIC[™] NC / ALPOLIC[™] A1 Scenario 1 and scenario 2.

Table 10 Output flows for ALPOLIC $^{\rm TM}$ NC / ALPOLIC $^{\rm TM}$ A1 scenario 1 and scenario 2

Parameters	Unit	Upstream processes	Core processes	Downstream processes			Scenario 1 Other Environ mental benefits	Scenario 2 Other Environ mental benefits
		A1	A2-A3	A4	C1-C2	C3-C4	D	D
Reuse	kg	0	0	0	0	0	0	0
Materials for recycling	kg	3.17	0	0	0	0	0	0
Energy recovered	MJ	0	0	0	0	0	0	0
Energy exported	MJ	0	0	0	0	0	0	0
Energy exported, thermal	MJ	0	0	0	0	0	0	0

References

The International EPD System. (2021). General Programme instructions. Envirodec.

- ISO 14025. (2006). *Environmental management -Life cycle assessment Principles and framework*. International Standard Organisation.
- ISO 14040. (2006). *Environmental management -Life cycle assessment Principles and framework.* International Organization for Standardization.
- ISO 14044. (2016). *Environmental management –Life cycle assessment Requirements and guidelines.* International Organization for Standardization.
- The International EPD System. (2021). *Construction products and construction services; registration 2012:01; version 2.33* Envirodec.

